Auto w Pracy

Slideshow Image

Jednym z kluczowych parametrów dla użytkowników samochodów elektrycznych jest czas potrzebny do „zatankowania” pojazdu. To ile czasu potrzebujemy do naładowania akumulatorów decyduje o jego funkcjonalności. Jeżeli pojazd wykorzystujemy do jazd lokalnych w granicach zasięgu auta, to zazwyczaj nie stanowi to dla nas problemu. Akumulator możemy naładować w domu i nie ma tu większego znaczenia ile to potrwa. Zupełnie inaczej wygląda sprawa jeżeli mamy wyruszyć w dłuższą trasę. Tu będzie liczyła się każda minuta. Nie każdy ma chęć na długą przerwę przy ładowarce.

W takiej sytuacji samochód powinien być gotowy do kolejnego etapu podróży po optymalnie krótkiej przerwie. Wielu klientów, aby ocenić charakterystykę samochodu elektrycznego, zwraca przede wszystkim uwagę na maksymalną moc ładowania. Ale wartość ta ma ograniczone zastosowanie, gdy przychodzi do podłączenia samochodu do terminala na stacji szybkiego ładowania. By proces ten trwał jak najkrócej, zasadniczego znaczenia nabiera wtedy szybkość ładowania (kWh / minuta ładowania). Innymi słowy: wysoka wydajność ładowania musi być dostępna wtedy przez jak najdłuższy okres czasu. Tym właśnie przekonują klientów modele z gamy Audi e-tron.

Dzięki wysokiej mocy ładowania, Audi e-tron zajmuje czołowe wśród konkurencji miejsce – nawet gdy na rynku są inne modele o nominalnie wyższej mocy Różnica tkwi w szczegółach: zdolność szybkiego ładowania HPC (High Power Charging) na terminalu ładującym, która ma zapewnić możliwie najwyższą moc wyjściową, może być tu warunkiem niezbędnym, ale niekoniecznie kluczowym.

 

Niemniej ważny jest wysoki pobór prądu przez dużą część procesu ładowania baterii. Jeśli samochód ładuje się z maksymalną wydajnością przez stosunkowo krótki czas i musi wcześniej obniżyć moc, jednocześnie zmniejszana jest również prędkość ładowania - tzn. bateria jest ładowana z maksymalną mocą przez określoną jednostkę czasu. Zatem dzięki idealnej krzywej ładowania z maksymalną mocą dostępną przez długi czas, czas ładowania jest bardziej istotnym kryterium pod względem wydajności, i ostatecznie gwarantuje krótki postój przy terminalu ładującym.

 

W idealnych warunkach samochód ładuje się do poziomu od 5% do 70% na progu maksymalnej mocy wyjściowej, zanim inteligentne zarządzanie funkcjonowaniem baterii zmniejszy prąd. To właśnie jest kluczowa różnica w porównaniu z innymi koncepcjami, które zwykle osiągają pełną moc wyjściową tylko przez krótki czas - w szczytowym momencie ładowania - i znacznie obniżają swoją moc przed osiągnięciem progu 70% naładowania. Koncepcja Audi daje ogromną przewagę w codziennym użytkowaniu: jeśli klient chce pokonać dystans około 110 kilometrów, na stacji ładowania spędzi niecałe 10 minut. Audi e-tron 55 osiąga poziom 80% naładowania po około 30 minutach. Mimo, że z przyczyn technicznych dużo więcej czasu zajmuje naładowanie pozostałych 20 procent akumulatora litowo-jonowego, pełne naładowanie (od 5% do 100%) na terminalu HPC to tylko około 45 minut – to wyjątkowe osiągnięcie w bardzo konkurencyjnym otoczeniu.

 

Litowo-jonowa bateria Audi e-tron 55 ma pojemność brutto 95 kWh (86,5 kWh netto) i została zaprojektowana z myślą o długim cyklu życia. Chłodzenie cieczą powoduje, że temperatura akumulatora utrzymuje się w optymalnym zakresie od 25 do 35 stopni Celsjusza, nawet przy niesprzyjających warunkach lub w niskich temperaturach otoczenia. W czterech obwodach (w sumie 40 metrów przewodów) krążą 22 litry płynu chłodzącego. Podczas ładowania prądem stałym o mocy 150 kW, płyn chłodzący odbiera ciepło powstałe w wyniku wewnętrznego oporu elektrycznego akumulatora. Rdzeń układu chłodzenia składa się z wytłaczanych profili, które zostały przymocowane do układu akumulatorów od dołu. Nowo opracowany, przewodzący ciepło klej łączy układ chłodzenia z obudową akumulatora. Specjalny wypełniacz szczelin – żel przewodzący ciepło - umożliwia pełny kontakt między obudową a umieszczonymi w niej modułami ogniw. Żel wypełnia wszystkie szczeliny między elementami i równomiernie, poprzez obudowę akumulatora, przenosi ciepło odpadowe wytwarzane przez ogniwa wprost do płynu chłodzącego. Oddzielenie poszczególnych elementów w przestrzeni zwiększa bezpieczeństwo systemu. Dodatkowym pozytywnym efektem tego skomplikowanego projektu jest wysoka odporność podczas wypadku.